Chemokine CCL5/RANTES inhibition reduces myocardial reperfusion injury in atherosclerotic mice

2010 
Abstract Although beneficial for cardiomyocyte salvage and to limit myocardial damage and cardiac dysfunction, restoration of blood flow after prolonged ischemia exacerbates myocardial injuries. Several deleterious processes that contribute to cardiomyocyte death have been proposed, including massive release of reactive oxygen species, calcium overload and hypercontracture development or leukocyte infiltration within the damaged myocardium. Chemokines are known to enhance leukocyte diapedesis at inflammatory sites. The aim of the present study was to investigate the effect of chemokine CCL5/RANTES antagonism in an in vivo mouse model of ischemia and reperfusion. ApoE −/− mice were submitted to 30 min ischemia, by ligature of the left coronary artery, followed by 24 h reperfusion. Intraperitoneal injection of 10 μg of CCL5/RANTES antagonist [ 44 AANA 47 ]-RANTES, 5 min prior to reperfusion, reduced infarct size as well as Troponin I serum levels compared to PBS-treated mice. This beneficial effect of [ 44 AANA 47 ]-RANTES treatment was associated with reduced leukocyte infiltration into the reperfused myocardium, as well as decreased chemokines Ccl2/Mcp-1 and Ccl3/Mip-1α expression, oxidative stress, and apoptosis. However, mice deficient for the CCL5/RANTES receptor Ccr5 did not exhibit myocardium salvage in our model of ischemia-reperfusion. Furthermore, [ 44 AANA 47 ]-RANTES did not mediate cardioprotection in these ApoE −/− Ccr5 −/− deficient mice, probably due to enhanced expression of compensatory chemokines. This study provides the first evidence that inhibition of CCL5/RANTES exerts cardioprotective effects during early myocardial reperfusion, through its anti-inflammatory properties. Our findings indicate that blocking chemokine receptor/ligand interactions might become a novel therapeutic strategy to reduce reperfusion injuries in patients during acute coronary syndromes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    76
    Citations
    NaN
    KQI
    []