Benzene metabolite hydroquinone promotes DNA homologous recombination repair via the NF-κB pathway

2019 
: Benzene, a widespread environmental pollutant, induces DNA double-strand breaks (DSBs) and DNA repair, which may further lead to oncogenic mutations, chromosomal rearrangements and leukemogenesis. However, the molecular mechanisms underlying benzene-induced DNA repair and carcinogenesis remain unclear. The human osteosarcoma cell line (U2OS/DR-GFP), which carries a GFP-based homologous recombination (HR) repair reporter, was treated with hydroquinone, one of the major benzene metabolites, to identify the potential effects of benzene on DSB HR repair. RNA-sequencing was further employed to identify the potential key pathway that contributed to benzene-initiated HR repair. We found that treatment with hydroquinone induced a significant increase in HR. NF-κB pathway, which plays a critical role in carcinogenesis in multiple tumors, was significantly activated in cells recovered from hydroquinone treatment. Furthermore, the upregulation of NF-κB by hydroquinone was also found in human hematopoietic stem and progenitor cells. Notably, the inhibition of NF-κB activity by small molecule inhibitors (QNZ and JSH-23) significantly reduced the frequency of hydroquinone-initiated HR (-1.36- and -1.77-fold, respectively, P < 0.01). Our results demonstrate an important role of NF-κB activity in promoting HR repair induced by hydroquinone. This finding sheds light on the underlying mechanisms involved in benzene-induced genomic instability and leukemogenesis and may contribute to the larger exploration of the influence of other environmental pollutants on carcinogenesis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    4
    Citations
    NaN
    KQI
    []