A direct proof that sole actin dynamics drive membrane deformations

2018 
Cell membrane deformations are crucial for proper cell function. Specialized protein assemblies initiate inward or outward membrane deformations that turn into, for example, filopodia or endocytic intermediates. Actin dynamics and actin-binding proteins are involved in this process, although their detailed role remains controversial. We show here that a dynamic, branched actin network is sufficient, in absence of any membrane-associated proteins, to initiate both inward and outward membrane deformation. With actin polymerization triggered at the membrane of liposomes, we produce inward filopodia-like structures at low tension, while outward endocytosis-like structures are robustly generated regardless of tension. Our results are reminiscent of endocytosis in mammalian cells, where actin polymerization forces are required when membrane tension is increased, and in yeast, where they are always required to overcome the opposing turgor pressure. By combining experimental observations with physical modeling, we propose a mechanism for actin-driven endocytosis under high tension or high pressure conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    2
    Citations
    NaN
    KQI
    []