Optofluidic chips with nanochannels for dynamic molecular detection using enhanced fluorescence

2016 
The fabrication of a novel optofluidic chip using nanochannels optimized for DNA-stretched molecules and optical detection by enhanced fluorescence is reported. The chips are composed of a series of microchannels that allow the transport of molecules in the femto-liter per second inside a fluid or gas. The nanochannels are surrounded by a photonic crystal structure to enhance the emission of fluorescent light from the molecules, which can travel along the nanochannel, allowing for enhanced optical detection of the molecules in motion. The photonic crystal structure provides an enhancement up to 2.5 times in the light emitted from fluorescent molecules inside the nanochannels which increases to around 250 when normalized to the area of the nanochannels emitting fluorescence. The results may help to the detection of fluorescent molecules (like marked-DNA) in series by speeding it and allowing the use of less sophisticated equipment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    1
    Citations
    NaN
    KQI
    []