Mechanical dissipation in tetrahedral amorphous carbon

2005 
We have fabricated micromechanical oscillators from tetrahedrally coordinated amorphous carbon (ta-C) in order to study mechanical dissipation mechanisms in this material. Cantilever oscillators with either in-plane or out-of-plane dominant transverse vibrational modes and free-free beam oscillators with in-plane modes were fabricated with critical dimensions ranging from 75nm to over 1mm. The resonant frequency and quality factor were measured for all oscillators. The resonant frequencies ranged from a few kilohertz to several megahertz, while the quality factor remained nearly constant at approximately 2–4×103. Possible dissipation mechanisms were evaluated for these oscillators, and it was found that the observed dissipation was not limited by mechanical clamping losses, air damping, thermoelastic dissipation, or dissipation due to phonon-mechanical vibration interactions. However, an extrinsic dissipation mechanism in which dissipation is limited by a spectrum of defects in ta-C was found to be consis...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    31
    Citations
    NaN
    KQI
    []