Change in seismic activity in the Tokai region related to weakening and strengthening of the interplate coupling

2006 
Abstract We investigate the relationship between changes in seismicity and crustal deformations in the Tokai region. We describe how seismicity in the subducted slab increased remarkably in the fall of 2000 and decreased in the fall of 2001, while in contrast, the crust seismicity decreased in the fall of 2000 and increased in the fall of 2001. We note that the trend of horizontal displacement at GPS stations changed coincidentally and we propose interpreting the increase and decrease in seismic activities and the changes in crustal deformations in a unified way based on changes in the state of the interplate coupling, i.e., the back-slip rate was reduced in the fall of 2000 and was partially restored in the fall of 2001. We explain why reduction of the back-slip rate increases seismogenic stress in the slab and decreases stress in the crust. We also describe the substantial positive dilatation observed in the region around Mt. Fuji in the fall of 2000 and suggest that the remarkable increase of low-frequency earthquakes beneath Mt. Fuji in October 2000 may have been caused by deceleration of the converging motion of the Izu micro-plate with the Eurasian plate. The decrease of the subduction velocity of the Izu micro-plate on the Suruga Trough in late 2000 would also have contributed to weakening of the interplate coupling beneath the Tokai region, since reduction of the relative velocity between overriding and subducting plates produces the same effect on the plate interface as a diminishing back-slip rate. However, subduction of the Izu micro-plate on the Suruga Trough was accelerated in early 2003, which may have caused increases in both slab and crust seismicities in that period.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    10
    Citations
    NaN
    KQI
    []