NiSe@NiOx core-shell nanowires as a non-precious electrocatalyst for upgrading 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid

2019 
Abstract A key challenge for the conversion of 5-hydroxymethylfurfural (HMF) into value-added 2,5-furandicarboxylic acid (FDCA) is improving the sluggish kinetics of selective oxidation alcohol groups. Electrocatalysis has been proved to be a green and efficient strategy for heterogeneous synthetic chemistry. Herein, we report an electrocatalyst of NiSe@NiOx core-shell nanowires for efficiently upgrading HMF into FDCA. The NiSe@NiOx features conductive NiSe nanowires as a core and active NiOx as a shell, showing a smaller Tafel slope of 23 mV dec−1 accompanying with a near-quantitative yield of FDCA and 99% Faradaic efficiency (FE). X-ray photoelectron spectroscopy unveils the high valence of Ni species in the NiOx shell may be the active sites. Further integrated electrolyzer can produce FDCA and hydrogen simultaneously, showing a 100% FE even after six successive cycles, disclosing robust stability. All these results demonstrate NiSe@NiOx core-shell nanowires as a promising robust non-precious electrocatalyst for highly efficient biomass transformation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    32
    Citations
    NaN
    KQI
    []