A New Vacuum Brazing Route for Niobium-316L Stainless Steel Transition Joints for Superconducting RF Cavities

2015 
The paper describes a new approach for vacuum brazing of niobium-316L stainless steel transition joints for application in superconducting radiofrequency cavities. The study exploited good wettability of titanium-activated silver-base brazing alloy (CuSil-ABA®), along with nickel as a diffusion barrier, to suppress brittle Fe-Nb intermetallic formation, which is well reported during the established vacuum brazing practice using pure copper filler. The brazed specimens displayed no brittle intermetallic layers on any of its interfaces, but instead carried well-distributed intermetallic particles in the ductile matrix. The transition joints displayed room temperature tensile and shear strengths of 122-143 MPa and 80-113 MPa, respectively. The joints not only exhibited required hermeticity (helium leak rate <1.1 × 10−10 mbar l/s) for service in ultra-high vacuum but also withstood twelve hour degassing heat treatment at 873 K (suppresses Q-disease in niobium cavities), without any noticeable degradation in the microstructure and the hermeticity. The joints retained their leak tightness even after undergoing ten thermal cycles between the room temperature and the liquid nitrogen temperature, thereby establishing their ability to withstand service-induced low cycle fatigue conditions. The study proposes a new lower temperature brazing route to form niobium-316L stainless steel transition joints, with improved microstructural characteristics and acceptable hermeticity and mechanical properties.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    11
    Citations
    NaN
    KQI
    []