Bone morphogenetic protein-4 inhibits adult neurogenesis and is regulated by fractone-associated heparan sulfates in the subventricular zone.

2014 
Fractones are extracellular matrix structures that display a fractal ultrastructure and that are visualized as puncta after immunolabeling for laminin or heparan sulfate proteoglycans. In the adult brain, fractones are found throughout the subventricular zone (SVZ). The role of fractones is just emerging. We have recently shown that fractones sequester fibroblast growth factor-2 and bone morphogenetic protein-7 from the brain ventricles to regulate cell proliferation in the SVZ of the lateral ventricle, the primary neural stem cell niche and neurogenic zone in adulthood. Here, we have examined in vivo the effect of bone morphogenetic protein-4 (BMP-4) on cell proliferation in the SVZ and we have determined whether BMP-4 interacts with fractones to promote this effect. To examine BMP-4 effect on cell proliferation, BMP-4 was intracerebroventricularly injected, and bromodeoxyuridine immunolabeling was performed on frozen sections of the adult mouse brain. To identify the location of BMP-4 binding, biotinylated-BMP-4 was injected, and its binding localized post-mortem with streptavidin, Texas red conjugate. Injection of heparitinase-1 was used to desulfate fractones and determine whether the binding and the effect of BMP-4 on cell proliferation are heparan sulfate-dependent. BMP-4 inhibited cell proliferation in the SVZ neurogenic zone. Biotinylated-BMP-4 bound to fractones and some adjacent blood vessels. Co-injection of heparitinase-1 and biotinylated-BMP-4 resulted in the absence of signal for biotinylated-BMP-4, indicating that the binding was heparan sulfate dependent. Moreover, preventing the binding of BMP-4 to fractones by heparitinase-1 reinforced the inhibitory effect of BMP-4 on cell proliferation in the SVZ. These results show that BMP-4 inhibits cell proliferation in the SVZ neurogenic zone and that the binding of BMP-4 to fractone-associated heparan sulfates moderates this inhibitory effect. Together with our previous results, these data support the view that fractones capture growth factors and modulate their activity in the neural tissues lining the ventricles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    31
    Citations
    NaN
    KQI
    []