Realization of a multi-node quantum network of remote solid-state qubits.

2021 
The distribution of entangled states across the nodes of a future quantum internet will unlock fundamentally new technologies. Here we report on the experimental realization of a three-node entanglement-based quantum network. We combine remote quantum nodes based on diamond communication qubits into a scalable phase-stabilized architecture, supplemented with a robust memory qubit and local quantum logic. In addition, we achieve real-time communication and feed-forward gate operations across the network. We capitalize on the novel capabilities of this network to realize two canonical protocols without post-selection: the distribution of genuine multipartite entangled states across the three nodes and entanglement swapping through an intermediary node. Our work establishes a key platform for exploring, testing and developing multi-node quantum network protocols and a quantum network control stack.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    30
    Citations
    NaN
    KQI
    []