Steady-state direct-current plasma immersion ion implantation using a multipolar magnetic field electron cyclotron resonance plasma source

2001 
In semiconductor plasma immersion ion implantation (PIII) applications such as the synthesis of silicon-on-insulator by hydrogen PIII and ion cut, only ions arriving at the top surface of the sample stage are important. The ions implanted into the other surfaces of the sample chuck actually not only decrease the efficiency of the power supply and plasma source but also give rise to metallic contamination. In addition, low energy ions introduced by the initial plasma sheath propagation, pulse rise time, and pulse fall time introduce a large surface hydrogen concentration that creates surface damage and affects the wafer bonding efficacy. We have theoretically demonstrated direct-current PIII (DC-PIII) which retains the x–y immersion characteristic while simultaneously reducing this low energy ion component, obviating the need for the expensive power modulator, and extending the voltage ceiling that is no longer limited by the vacuum chamber and power modulator. In this article, we describe our hydrogen DC-...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    4
    Citations
    NaN
    KQI
    []