Detection of Non-Technical Losses Using MLP-GRU Based Neural Network to Secure Smart Grids

2021 
In this paper, a data driven based solution is proposed to detect Non-Technical Losses (NTLs) in the smart grids. In the real world, the number of theft samples are less as compared to the benign samples, which leads to data imbalance issue. To resolve the issue, diverse theft attacks are applied on the benign samples to generate synthetic theft samples for data balancing and to mimic real-world theft patterns. Furthermore, several non-malicious factors influence the users’ energy usage patterns such as consumers’ behavior during weekends, seasonal change and family structure, etc. The factors adversely affect the model’s performance resulting in data misclassification. So, non-malicious factors along with smart meters’ data need to be considered to enhance the theft detection accuracy. Keeping this in view, a hybrid Multi-Layer Perceptron and Gated Recurrent Unit (MLP-GRU) based Deep Neural Network (DNN) is proposed to detect electricity theft. The MLP model takes auxiliary data such as geographical information as input while the dataset of smart meters is provided as an input to the GRU model. Due to the improved generalization capability of MLP with reduced overfitting and effective gated configuration of multi-layered GRU, the proposed model proves to be an ideal solution in terms of prediction accuracy and computational time. Furthermore, the proposed model is compared with the existing MLP-LSTM model and the simulations are performed. The results show that MLP-GRU achieves 0.87 and 0.89 score for Area under the Receiver Operating Characterstic Curve and Area under the Precision-Recall Curve (PR-AUC), respectively as compared to 0.72 and 0.47 for MLP-LSTM.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []