Efficiency enhancement in P3HT-based polymer solar cells with a NaYF4:2% Er3+, 18% Yb3+ up-converter

2013 
The commonly used donor material poly(3-hexylthiophene) (P3HT) confines the power conversion efficiency (PCE) in P3HT-based polymer solar cells due to its relatively large bandgap of ∼1.9 eV and the resultant limited absorption wavelength region of less than 650 nm. In this communication, the highly efficient up-conversion (UC) material NaYF4:2% Er3+, 18% Yb3+, converting near-infrared radiation into green and red emissions, is introduced into a P3HT/P3HT:[6,6] phenyl C61 butyric acid methyl ester (PC61BM) bulk heterojunction solar cell, referred to as a “bilayer cell”, to compensate for the non-absorbable wavelength region of P3HT. With an optimal UC doping concentration of 11.7% (weight ratio of UC to P3HT) in the P3HT matrix, the short-circuit current density and PCE for UC-doped bilayer cell are as high as 10.89 mA cm−2 and 3.62%, about 16.6% and 10.7% higher than the P3HT/P3HT:PC61BM bilayer cell and 22.4% and 16.4% higher than the standard P3HT:PC61BM bulk heterojunction one, respectively, although the fill factor in the UC-doped bilayer cell shows a slight decrease. The research result demonstrates that both the emission and the scattering of UC nanoparticles are beneficial to the enhancement of the solar cell's electrical performances.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    15
    Citations
    NaN
    KQI
    []