Biochemical changes in the skin of rats exposed to radiation against the background of thermal stress. [X rays; ATPase and creatine kinase activities]

1978 
The effectiveness of exposing rats to different doses of x radiation after submitting them to a heat load, according to the tests of ATPase and creatine kinase activity of aqueous extracts of skin at the relatively late observation period was compared. The effects of the combined factors were monitored by means of a heat load (one group) and exposure to radiation alone in doses of 25, 50, 100, 250, and 400 R (5 groups). The obtained data are indicative of marked specificity of ATPase and creatine kinase reactions to the combined factors. Creatine kinase activity undergoes a 157% change, whereas the mean relative deviation of ATPase activity constitutes only 71% of the normal level. The most effect loads are 36/sup 0/C + 25 R and 36/sup 0/C + 400 R. With all tested doses the extent of the effect of radiation on creatine kinase activity is only negligibly lower than the effectiveness of combined loads, whereas according to the ATPase test, radiation alone induces virtually the same changes in activity as combined factors. ATPase undergoes maximum change after irradiation in doses of 250 and 400 R; delivery of 25 to 100 R is associated with much less marked changes inmore » activity. In contrast, creatine kinase demonstrates maximum sensitivity to radiation in a dosage of 25 R and minimum sensitivity, with a dosage of 100 R. Thermal stress (according to ATPase and creatine kinase activity) has a profound and quite substantial effect on processes of development of radiation lesion. It can be manifested by complete or partial summation of effects of each of the factors, mutual attenuation of effects, or absence of interaction between factors in the combination. All this is indicative of the complexity and differences in mechanisms of expression of effects of the factors used. (ERB)« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []