Target Identification of Small Molecules Using Large-Scale CRISPR-Cas Mutagenesis Scanning of Essential Genes.

2022 
Target deconvolution of new bioactive agents identified from phenotypic screens remains a challenging task. The discovery of mutations that confer resistance to such agents is regarded as the gold standard proof of target identification. Here, we describe a method that exploits the error-prone repair of CRISPR-induced DNA double-strand breaks to enhance mutagenesis and increase the incidence of drug resistance mutations in essential genes. As each DNA double-strand break is introduced at a targeted genomic site predefined by the presence of a protospacer adjacent motif (PAM) and a particular CRISPR single guide RNA (sgRNA), the genetic location of drug resistance mutations can be easily uncovered through targeted sequencing of CRISPR sgRNAs. Moreover, the method allows for the identification of not only the drug target gene, but also the drug-binding domain within the target gene.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    0
    Citations
    NaN
    KQI
    []