Control of neuronal excitability by calcium binding proteins: a new mathematical model for striatal fast-spiking interneurons

2012 
Calcium binding proteins, such as parvalbumin, are abundantly expressed in very distinctive patterns in the central nervous system but their physiological function remains poorly understood. Notably, at the level of the striatum, parvalbumin is only expressed in the fast spiking (FS) interneurons, which form a inhibitory network modulating the output of the striatum by synchronizing medium-sized spiny neurons (MSN). So far the existing conductance-based computational models for FS neurons did not allow the study of the the coupling between parvalbumin concentration and electrical activity. In the present paper, we propose a new mathematical model for the striatal FS interneurons that includes apamin-sensitive small conductance \ca -dependent \kk channels (SK) and takes into account the presence of a calcium buffer. Our results demonstrate that a variation in the concentration of parvalbumin can modulate substantially the intrinsic excitability of the FS interneurons and therefore may be involved in the information processing at the striatal level.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    12
    Citations
    NaN
    KQI
    []