Peroxisome Proliferator-Activated Receptor-α Accelerates α-Chlorofatty Acid Catabolism.

2017 
α-Chlorofatty aldehydes are generated from myeloperoxidase-derived HOCl targeting plasmalogens, and are subsequently oxidized to α-chlorofatty acids (α-ClFAs). The catabolic pathway for α-ClFA is initiated by ω-oxidation. Here, we examine PPAR-α activation as a mechanism to increase α-ClFA catabolism. Pretreating both HepG2 cells and primary mouse hepatocytes with the PPAR-α agonist, pirinixic acid (Wy 14643), increased the production of α-chlorodicarboxylic acids (α-ClDCAs) in cells treated with exogenous α-ClFA. Additionally, α-ClDCA production in Wy 14643-pretreated wild-type mouse hepatocytes was accompanied by a reduction in cellular free α-ClFA. The dependence of PPAR-α-accelerated α-ClFA catabolism was further demonstrated by both impaired metabolism in mouse PPAR-α-/- hepatocytes and decreased clearance of plasma α-ClFA in PPAR-α-/- mice. Furthermore, Wy 14643 treatments decreased plasma 2-chlorohexadecanoic acid levels in wild-type mice. Additional studies showed that α-ClFA increases PPAR-α, PPAR-δ, and PPAR-γ activities, as well as mRNA expression of the PPAR-α target genes, CD36, CPT1a, Cyp4a10, and CIDEC. Collectively, these results indicate that PPAR-α accelerates important pathways for the clearance of α-ClFA, and α-ClFA may, in part, accelerate its catabolism by serving as a ligand for PPAR-α.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    5
    Citations
    NaN
    KQI
    []