Convex hull of a Brownian motion in confinement.

2015 
We study the effect of confinement on the mean perimeter of the convex hull of a planar Brownian motion, defined as the minimum convex polygon enclosing the trajectory. We use a minimal model where an infinite reflecting wall confines the walk to its one side. We show that the mean perimeter displays a surprising minimum with respect to the starting distance to the wall and exhibits a non-analyticity for small distances. In addition, the mean span of the trajectory in a fixed direction {$\theta \in ]0,\pi/2[$}, which can be shown to yield the mean perimeter by integration over $\theta$, presents these same two characteristics. This is in striking contrast with the one dimensional case, where the mean span is an increasing analytical function. The non-monotonicity in the 2D case originates from the competition between two antagonistic effects due to the presence of the wall: reduction of the space accessible to the Brownian motion and effective repulsion.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    12
    Citations
    NaN
    KQI
    []