Path-Following with LiDAR-based Obstacle Avoidance of an Unmanned Surface Vehicle in Harbor Conditions

2020 
This article studies the design, modeling, and implementation challenges of a path-following with obstacle avoidance algorithms as guidance, navigation, and control (GNC) architecture of an unmanned surface vehicle (USV) in harbor conditions. First, an effective mathematical model is developed based on system identification, validating the USV model with field-test data. Then, a guidance system is addressed based on a line-of-sight algorithm, which uses a LiDAR as the main perception sensor for the obstacle avoidance algorithm. The GNC architecture uses a modular approach, including obstacle detection, path-following, and control in the USV platform. Finally, an implementation challenge in two control scenarios, simulation and field test, is addressed to validate the designed GNC architecture.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    4
    Citations
    NaN
    KQI
    []