Influence of surface states on blinking characteristics of single colloidal CdSe-CdS/ZnS core-multishell quantum dot

2017 
Abstract We carefully characterized the fluorescence blinking of single colloidal CdSe-CdS/ZnS core-multishell quantum dots (QDs) with different surface modifications, including octadecylamine (ODA) coated QDs dispersed in chloroform, aqueous 3-mercaptopropionic acids (3MPA) coated QDs in HEPES solution treated by Ca 2 + ions and ethylene glycol tetraacetic acid (EGTA, Ca 2 + chelator), and aqueous 3MPA-QDs treated by glycerol. It was found that the on- and off-state probability density distributions displayed different rules. The off-state probability density distributions of all QDs complied well with the inverse power law, while the on-state probability density distributions bended upwards in log-log scale, and the degree of the upwards-bending correlated strongly with QD surface modification and fluorescence brightness of the single QD. Further autocorrelation analysis revealed that the fluorescence time series of a single QD was more random when the single QD showed a stronger fluorescence. Realistic numerical simulations with input parameters from quantum mechanical calculations showed that the QD exciton was first generated by an excitation photon; It radiatively recombined to give QD’s fluorescence response, i.e., the on-state, which displayed the upwards-bended on-state probability density distribution profile; The electron and/or the hole of the photoexcited exciton in the QD core, after tunneling to the QD surface, randomly walked through the two-dimensional network of the QD surface states, resulting in the off-state probability density distribution profile of the inverse power law. Surface modification modified the QD surface-state network, in turn modifying the on/off probability density distribution profiles. Our findings provide us with a novel highway of applying colloidal QDs to study microscopic physical, and chemical, processes in many fields including in vivo and in vitro imaging, sensing and labelling.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    5
    Citations
    NaN
    KQI
    []