Sectorized Antenna-based DoA Estimation and Localization: Advanced Algorithms and Measurements

2015 
Sectorized antennas are a promising class of antennas for enabling direction-of-arrival (DoA) estimation and successive transmitter localization. In contrast to antenna arrays, sectorized antennas do not require multiple transceiver branches and can be implemented using a single RF front-end only, thus reducing the overall size and cost of the devices. However, for good localization performance the underlying DoA estimator is of uttermost importance. In this paper, we therefore propose a novel high performance DoA estimator for sectorized antennas that does not require cooperation between the transmitter and the localizing network. The proposed DoA estimator is broadly applicable with different sectorized antenna types and signal waveforms, and has low computational complexity. Using computer simulations, we show that our algorithm approaches the respective Cramer-Rao lower bound for DoA estimation variance if the signal-to-noise ratio (SNR) is moderate to large and also outperforms the existing estimators. Moreover, we also derive analytical error models for the underlying DoA estimation principle considering both free space as well as multipath propagation scenarios. Furthermore, we also address the fusion of the individual DoA estimates into a location estimate using the Stansfield algorithm and study the corresponding localization performance in detail. Finally, we show how to implement the localization in practical systems and demonstrate the achievable performance using indoor RF measurements obtained with practical sectorized antenna units.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    26
    Citations
    NaN
    KQI
    []