Hybrid ZTE/Dixon MR‐based attenuation correction for quantitative uptake estimation of pelvic lesions in PET/MRI

2017 
Purpose This study introduces a new hybrid ZTE/Dixon MR-based attenuation correction (MRAC) method including bone density estimation for PET/MRI and quantifies the effects of bone attenuation on metastatic lesions uptake in the pelvis. Methods Six patients with pelvic lesions were scanned using fluorodeoxyglucose (18F-FDG) in an integrated time-of-flight (TOF) PET/MRI system. For PET attenuation correction, MR imaging consisted of two-point Dixon and zero echo-time (ZTE) pulse sequences. A continuous-value fat and water pseudoCT was generated from two-point Dixon MRI. Bone was segmented from the ZTE images and converted to Hounsfield units (HU) using a continuous two-segment piecewise linear model based on ZTE MRI intensity. The HU values were converted to linear attenuation coefficients (LAC) using a bilinear model. The bone voxels of the Dixon-based pseudoCT were replaced by the ZTE-derived bone to produce the hybrid ZTE/Dixon pseudoCT. The three different AC maps (Dixon, hybrid ZTE/Dixon, CTAC) were used to reconstruct PET images using a TOF ordered subsets expectation maximization algorithm with a point-spread function model. Metastatic lesions were separated into two classes, bone lesions and soft tissue lesions, and analyzed. The MRAC methods were compared using a root-mean-squared error (RMSE), where the registered CTAC was taken as ground truth. Results The RMSE of the maximum standardized uptake values (SUVmax) is 11.02% and 7.79% for bone (N=6) and soft tissue lesions (N=8), respectively using Dixon MRAC. The RMSE of SUVmax for these lesions is significantly reduced to 3.28% and 3.94% when using the new hybrid ZTE/Dixon MRAC. Additionally, the RMSE for PET SUVs across the entire pelvis and all patients are 8.76% and 4.18%, for the Dixon and hybrid ZTE/Dixon MRAC methods, respectively. Conclusion A hybrid ZTE/Dixon MRAC method was developed and applied to pelvic regions in an integrated TOF PET/MRI, demonstrating improved MRAC. This new method included bone density estimation, through which PET quantification is improved. This article is protected by copyright. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    58
    Citations
    NaN
    KQI
    []