language-icon Old Web
English
Sign In

Fermilab drift tube Linac revisited

2004 
Using the PARMILA code running under PC-WINDOWS, the present performance of the Fermilab Drift Tube Linac has been analyzed in the light of new demands on the Linac/Booster complex (the Proton Source). The Fermilab Drift Tube Linac (DTL) was designed in the sixties as a proton linac with a final energy of 200 MeV and a peak current of 100mA. In the seventies, in order to enable multi-turn charge exchange injection into the Booster, the ion source was replaced by an H- source with a peak beam current of 25mA. Since then the peak beam current was steadily increased up to 55mA. In the early nineties, part of the drift tube structure was replaced with a side-coupled cavity structure in order to increase the final energy to 400 MeV. The original and still primary purpose of the linac is to serve as the injector for the Booster. As an added benefit, the Neutron Therapy Facility (NTF) was built in the middle seventies. It uses 66MeV protons from the Linac to produce neutrons for medical purposes. The Linac/Booster complex was designed to run at a fundamental cycling rate of 15Hz, but beam is accelerated on every cycle only when NTF is running. Until recently the demand from the High Energy Physics program resulted in an average linac beam repetition rate of order 1 Hz. With the MiniBoone experiment and the NuMI program, the demands on the Proton Source have changed, with emphasis on higher beam repetition rates up to 7.5Hz. Historically the beam losses in the linac were small, localized at one spot, so activation was not an important issue. With higher beam rate, this has the potential to become the dominant issue. Until today all tuning in the linac and Proton Source was governed by two goals: to maximize the peak beam current out of the linac and to minimize the beam losses in the linac. If maximal peak current from the linac is no longer a primary goal, then the linac quadrupoles can be adjusted differently to achieve different goals.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []