Effect of ultrasonic micro-arc oxidation on the antibacterial properties and cell biocompatibility of Ti-Cu alloy for biomedical application

2020 
Abstract In order to improve antibacterial properties and cell biocompatibility of Ti-Cu alloy, an ultrasonic micro-arc oxidation (UMAO) has been applied to Ti-Cu alloy. The corrosion resistance, antibacterial activity and cell compatibility of Ti-Cu alloy before and after UMAO were studied in detail by means of electrochemical test, plate count method and CCK-8 test scanning electron microscopy (SEM) technology to evaluate the application possibilities of UMAO as a surface bio-modification method for Ti-Cu alloy. The surface microstructure characterisation showed that a typical porous coating with a pore diameter of 3–8 μm and a thickness of 5–15 μm was formed on the surface of the Ti-Cu alloy, which significantly improved the surface roughness and hydrophilicity. The plate count method demonstrated that UMAO coatings on Ti-Cu alloy showed strong antibacterial activity (≥99%) against Staphylococcus aureus (S. aureus) even after being immersed in a physiological saline for up to 20 days, indicating that UMAO-treated Ti-Cu alloy had very strong long-term antibacterial properties. It is believed that the strong long-term antimicrobial properties of Ti-Cu-UMAO samples were mainly due to the formation of Cu2O and CuO in UMAO coatings. The results of cell compatibility evaluation showed that UMAO treatment did not bring about cytotoxicity but improved the early adhesion of MC3T3 cell.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    17
    Citations
    NaN
    KQI
    []