Parametric and Uncertainty Computations with Tensor Product Representations

2011 
Computational uncertainty quantification in a probabilistic setting is a special case of a parametric problem. Parameter dependent state vectors lead via association to a linear operator to analogues of covariance, its spectral decomposition, and the associated Karhunen-Loeve expansion. From this one obtains a generalised tensor representation The parameter in question may be a tuple of numbers, a function, a stochastic process, or a random tensor field. The tensor factorisation may be cascaded, leading to tensors of higher degree. When carried on a discretised level, such factorisations in the form of low-rank approximations lead to very sparse representations of the high dimensional quantities involved. Updating of uncertainty for new information is an important part of uncertainty quantification. Formulated in terms or random variables instead of measures, the Bayesian update is a projection and allows the use of the tensor factorisations also in this case.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    32
    Citations
    NaN
    KQI
    []