Numerical Investigation of the Wake Vortex-Related Flow Mechanisms in Transonic Turbines

2020 
As the core equipment of the power generation system, a gas turbine is an indispensable energy-converting device in the national industry. The flow inside a high-pressure turbine (HPT) is highly unsteady, which has a great influence on the aerothermal performance and structural strength. To better clarify the flow mechanism and guide the advanced design, the basic flow characteristics of transonic turbines are investigated in the paper by a modified scale-adaptive simulation (SAS) model based on the shear stress transport (SST) turbulence model. The numerical results reveal the formation and development of the secondary flow structures such as wake vortex, pressure wave, shock wave, and the interactions among them. The length and frequency characteristics of wake are in good agreement with the large eddy simulation (LES) and the experimental data. Based on the detailed flow information, the local loss analysis is performed using the entropy generation rate. In summary, the wake vortex-related flow is the main origin of unsteadiness and entropy loss in high-pressure turbine cascade.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    1
    Citations
    NaN
    KQI
    []