Full state visual forceps tracking under a microscope using projective contour models

2012 
Forceps tracking is an important element of high-level surgical assistance such as visual servoing and surgical motion analysis. In many computer vision algorithms, artificial markers are used to enable robust tracking; however, markerless tracking methods are more appropriate in surgical applications due to their sterilizability. This paper describes a robust, efficient tracking algorithm capable of estimating the full state parameters of a robotic surgical instrument on the basis of projective contour modeling using a 3-D CAD model of the forceps. Thus, the proposed method does not require any artificial markers. The likelihood of the contour model was measured using edge distance transformation to evaluate the similarity of the projected CAD model to the microscopic image, followed by particle filtering to estimate the full state of the forceps. Experimental results in simulated surgical environments indicate that the proposed method is robust and time-efficient, and fulfills real-time processing requirements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    7
    Citations
    NaN
    KQI
    []