Ultra-high piezoelectric coefficients and strain-sensitive curie temperature in hydrogen-bonded systems

2020 
We propose a new approach to obtain ultra-high piezoelectric coefficients that can be infinitely large theoretically, where ferroelectrics with strain-sensitive Curie temperature are necessary. We show the first-principles plus Monte Carlo simulation evidence that many hydrogen-bonded ferroelectrics (e.g. organic PhMDA) can be ideal candidates, which are also flexible and lead-free. Owing to the specific features of hydrogen bonding, their proton hopping barrier will drastically increase with prolonged proton transfer distance, while their hydrogen-bonded network can be easily compressed or stretched due to softness of hydrogen bonds. Their barriers as well as the Curie temperature can be approximately doubled upon a tensile strain as low as 2%. Their Curie temperature can be tuned exactly to room temperature by fixing a strain in one direction, and in another direction, an unprecedented ultra-high piezoelectric coefficient of 2058 pC/N can be obtained. This value is even underestimated and can be greatly enhanced when applying a smaller strain. Aside from sensors, they can also be utilized for converting either mechanical or thermal energies into electrical energies due to high pyroelectric coefficients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    0
    Citations
    NaN
    KQI
    []