Spatial profiles of store‐dependent calcium release in motoneurones of the nucleus hypoglossus from newborn mouse

2003 
Hypoglossal motoneurones (HMN) are selectively damaged in both human amyotrophic lateral sclerosis (ALS) and corresponding mouse models of this neurodegenerative disease, a process which has been linked to their low endogenous Ca2+ buffering capacity and an exceptional vulnerability to Ca2+-mediated excitotoxic events. In this report, we investigated local Ca2+ profiles in low buffered HMNs by utilizing multiphoton microscopy, CCD imaging and patch clamp recordings in slice preparations. Bath application of caffeine induced highly localized Ca2+ release events, which displayed an initial peak followed by a slow ‘shoulder’ lasting several seconds. Peak amplitudes were paralleled by Ca2+-activated, apamin-sensitive K+ currents (IKCa), demonstrating a functional link between Ca2+ stores and HMN excitability. The potential involvement of mitochondria was investigated by bath application of CCCP, which collapses the electrochemical potential across the inner mitochondrial membrane. CCCP reduced peak amplitudes of caffeine responses and consequently IKCa, indicating that functionally intact mitochondria were critical for store-dependent modulation of HMN excitability. Taken together, our results indicate localized Ca2+ release profiles in HMNs, where low buffering capacities enhance the role of Ca2+-regulating organelles as local determinants of [Ca2+]i. This might expose HMN to exceptional risks during pathophysiological organelle disruptions and other ALS-related, cellular disturbances.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    50
    Citations
    NaN
    KQI
    []