Towards more accurate microcavity sensors: maximum likelihood estimation applied to a combination of quality factor and wavelength shifts

2013 
Optical microcavities are widely used for biological and chemical sensing applications. In these devices, a sensing event is estimated by measuring the shift in the resonant wavelength, or in the quality factor of the microcavity. However, all published works to date only use one of these measures to estimate the sensing event. Here, we show that the estimation accuracy of a sensing event can be improved by employing a combination of both the quality factor and the resonant wavelength measurements in a microcavity sensor. We further demonstrate an experimental application of this model by introducing a refractive index change for a microtoroidal cavity sensor immersed in a liquid. By further using the finite element method simulations in conjunction with the estimator model, we show the existence of three distinct measurement regimes as a function of the quality factor of the microcavity. Finally, the estimator model is extended to develop a sensing metric to compare performance of optical or non-optical sensors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    8
    Citations
    NaN
    KQI
    []