Single-Photon Emission Computed Tomography Imaging Using Formyl Peptide Receptor 1 Ligand Can Diagnose Aortic Aneurysms in a Mouse Model.

2020 
BACKGROUND: Our previous studies showed that neutrophil infiltration and activation plays an important role in the pathogenesis of abdominal aortic aneurysms (AAA). However, there is a lack of noninvasive, inflammatory cell-specific molecular imaging methods to provide early diagnosis of AAA formation. Formyl peptide receptor 1 (FPR1) is rapidly upregulated on neutrophils during inflammation. Therefore, it is hypothesized that the use of cinnamoyl-F-(D)L-F-(D)L-F-K (cFLFLF), a PEGylated peptide ligand that binds FPR1 on activated neutrophils, would permit accurate and noninvasive diagnosis of AAA via single-photon emission computed tomography (SPECT) imaging. MATERIALS AND METHODS: Male C57BL/6 (wild-type) mice were treated with topical elastase (0.4 U/mL type 1 porcine pancreatic elastase) or heat-inactivated elastase (control), and aortic diameter was measured by video micrometry. Comparative histology was performed on Day 14 to assess neutrophil infiltration in aortic tissue. We performed near-infrared fluorescence imaging using c-FLFLF-Cy7 probe on Days 7 and 14 postelastase treatment and measured fluorescence intensity ex vivo in excised aortic tissue. A separate group of animals were injected with (99m)Tc-c-FLFLF 2 h before SPECT imaging on Day 14 using a SPECT/computed tomography/positron emission tomography trimodal scanner. Coexpression of neutrophils with c-FLFLF was also performed on aortic tissue by immunostaining on Day 14. RESULTS: Aortic diameter was significantly increased in the elastase group compared with controls on Days 7 and 14. Simultaneously, a marked increase in neutrophil infiltration and elastin degradation as well as decrease in smooth muscle integrity were observed in aortic tissue after elastase treatment compared with controls. Moreover, a significant increase in fluorescence intensity of c-FLFLF-Cy7 imaging probe was also observed in elastase-treated mice on Day 7 (approximately twofold increase) and Day 14 (approximately 2.5-fold increase) compared with respective controls. SPECT imaging demonstrated a multifold increase in signal intensity for (99m)Tc-cFLFLF radiolabel probe in mice with AAA compared with controls on Day 14. Immunostaining of aortic tissue with c-FLFLF-Cy5 demonstrated a marked increase in coexpression with neutrophils in AAA compared with controls. CONCLUSIONS: cFLFLF, a novel FPR1 ligand, enables quantifiable, noninvasive diagnosis and progression of AAAs. Clinical application of this inflammatory, cell-specific molecular probe using SPECT imaging may permit early diagnosis of AAA formation, enabling targeted therapeutic interventions and preventing impending aortic rupture.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    5
    Citations
    NaN
    KQI
    []