Heterostructure Manipulation via in Situ Localized Phase Transformation for High-Rate and Highly Durable Lithium Ion Storage

2018 
Recently, heterostructures have attracted much attention in widespread research fields. By tailoring the physicochemical properties of the two components, creating heterostructures endows composites with diverse functions due to the synergistic effects and interfacial interaction. Here, a simple in situ localized phase transformation method is proposed to transform the transition-metal oxide electrode materials into heterostructures. Taking molybdenum oxide as an example, quasi-core–shell MoO3@MoO2 heterostructures were successfully fabricated, which were uniformly anchored on reduced graphene oxide (rGO) for high-rate and highly durable lithium ion storage. The in situ introduction of the MoO2 shell not only effectively enhances the electronic conductivity but also creates MoO3@MoO2 heterojunctions with abundant oxygen vacancies, which induces an inbuilt driving force at the interface, enhancing ion/electron transfer. In operando synchrotron X-ray powder diffraction has confirmed the excellent phase reve...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    86
    Citations
    NaN
    KQI
    []