Haploinsufficiency of vascular endothelial growth factor related signaling genes is associated with tetralogy of Fallot

2019 
To determine disease-associated single-gene variants in conotruncal defects, particularly tetralogy of Fallot (TOF). We analyzed for rare loss-of-function and deleterious variants in FLT4 (VEGFR3) and other genes in the vascular endothelial growth factor (VEGF) pathway, as part of a genome sequencing study involving 175 adults with TOF from a single site. We identified nine (5.1%) probands with novel FLT4 variants: seven loss-of-function, including an 8-kb deletion, and two predicted damaging. In ten other probands we found likely disruptive variants in VEGF-related genes: KDR (VEGFR2; two stopgain and two nonsynonymous variants), VEGFA, FGD5, BCAR1, IQGAP1, FOXO1, and PRDM1. Detection of VEGF-related variants (19/175, 10.9%) was associated with an increased prevalence of absent pulmonary valve (26.3% vs. 3.4%, p < 0.0001) and right aortic arch (52.6% vs. 29.1%, p = 0.029). Extracardiac anomalies were rare. In an attempt to replicate findings, we identified three loss-of-function or damaging variants in FLT4, KDR, and IQGAP1 in ten independent families with TOF. Loss-of-function variants in FLT4 and KDR contribute substantially to the genetic basis of TOF. The findings support dysregulated VEGF signaling as a novel mechanism contributing to the pathogenesis of TOF.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    37
    Citations
    NaN
    KQI
    []