A three-way junction aptasensor for lysozyme detection.
2013
Abstract A well-designed three-way junction (TWJ) aptasensor for lysozyme detection was developed based on target-binding-induced conformational change of aptamer-complementary DNA (cDNA) as probe. A ferrocene (Fc)-tagged cDNA is partially hybridized with an anti-lysozyme aptamer to form a folded structure where there is a coaxial stacking of two helices and the third one at an acute angle. In addition, the fabrication of the sensor was achieved via the single-step method, which offered a good condition for sensing. In the absence of lysozyme, electron transfer (eT), through the coaxial two helices called “conductive path”, is allowed between Fc-labeled moiety and the electrode. The binding of lysozyme to the aptamer blocks eT, leading to diminished redox signal. This aptasensor with an instinct signal attenuation factor shows a high sensitivity to lysozyme, and the response data is fitted by nonlinear least-squares to Hill equation. Detection limit is 0.2 nM with a dynamic range extending to 100 nM. Compared with existing electrochemical impedance spectroscopy (EIS)-based approaches, TWJ-DNA aptasensor was demonstrated to be more specific for detection and simpler for regeneration procedure.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
23
References
40
Citations
NaN
KQI