Magnon valves based on YIG/NiO/YIG all-insulating magnon junctions

2018 
As an alternative angular momentum carrier, magnons or spin waves can be utilized to encode information and breed magnon-based circuits with ultralow power consumption and non-Boolean data processing capability. In order to construct such a circuit, it is indispensable to design some electronic components with both long magnon decay and coherence length and effective control over magnon transport. Here we show that an all-insulating magnon junctions composed by a magnetic insulator (MI1)/antiferromagnetic insulator (AFI)/magnetic insulator (MI2) sandwich (Y3Fe5O12/NiO/Y3Fe5O12) can completely turn a thermogradient-induced magnon current on or off as the two Y3Fe5O12 layers are aligned parallel or anti-parallel. The magnon decay length in NiO is about 3.5~4.5 nm between 100 K and 200 K for thermally activated magnons. The insulating magnon valve (magnon junction), as a basic building block, possibly shed light on the naissance of efficient magnon-based circuits, including non-Boolean logic, memory, diode, transistors, magnon waveguide and switches with sizable on-off ratios.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    28
    Citations
    NaN
    KQI
    []