Typical uncertainties in alpha-particle spectrometry

2015 
Alpha-particle spectrometry is routinely performed with the aim of measuring absolute activities, activity ratios between different alpha-emitting nuclides or decay data such as branching factors, alpha emission probabilities and relative half-lives. It is most commonly performed with ion-implanted silicon detectors. Strong features of the technique are the low background levels that can be achieved due to low sensitivity to other types of radiation, the intrinsic efficiency close to 1 which reduces the efficiency calculations to a geometrical problem and the uniqueness of the energy spectra for each α-decaying nuclide. The main challenge is the limitation to the attainable energy resolution, even with thin and homogenous sources, which causes alpha energy peaks to be partially unresolved due to their width and low-energy tailing. The spectral deconvolution often requires fitting of analytical functions to each peak in the alpha spectrum. True coincidence effects between alpha particles and subsequently emitted conversion electrons cause distortions of the alpha spectra which lead to significant changes in the apparent peak area ratios. Optimum energy resolution can only be achieved on very thin sources, which puts constraints on the source preparation techniques. Radiochemical separations may be needed to extract the alpha emitters from voluminous matrices and efficiency tracing is performed by adding in another isotope by known amounts. Typical uncertainty components are discussed by means of some hypothetical examples.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    28
    Citations
    NaN
    KQI
    []