Phosphorus speciation and sorption-desorption characteristics in heavily manured soils.

2009 
Managing heavily manured soils for decreased P loss to waters requires improved understanding of the chemical and sorption-desorption characteristics of P in these soils. We used soils from agricultural fields receiving ≥8 yr of dairy, poultry, swine manure or spent mushroom compost for the determination of P functional groups in NaOH-EDTA extracts by solution 31 P nuclear magnetic resonance (NMR) spectroscopy, degree of P saturation (DPS), and P sorption-desorption isotherms. The 31 P NMR results show that inorganic orthophosphate was the primary form of P in manure treated (79-93% of total extract P) and untreated soils (33-71%). Pyrophosphate and phosphate monoesters were identified in all soils, whereas phosphate diesters were present in small proportions (<3%) in only a few soils. Polyphosphate, a more condensed form of inorganic P, was present in seven out of nine manured soils (9-47 mg P kg -1 , <2%) but absent in untreated soils. Concentrations of inositol hexakisphosphate (IHP), mostly myo-IHP plus some scyllo-lHP, were similar in manured soils (52-116 mg P kg -1 , 2-8%) and untreated soils (43-137 mg P kg -1 , 6-22%), suggesting a lack of IHP accumulation despite long-term manure applications, including poultry manures that are typically rich in IHP. Most of the treated soils had DPS ≈ 80 to 90% compared with 11 to 33% for the untreated samples. Results from P sorption isotherms showed that potential P release was 3 to 30 times greater from treated than untreated soils. The lack of IHP accumulation in soils receiving long-term manure applications implies that manure-derived IHP may not be biologically and environmentally benign.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    76
    Citations
    NaN
    KQI
    []