Increased Serotonin-1A (5-HT1A) Autoreceptor Expression and Reduced Raphe Serotonin Levels in Deformed Epidermal Autoregulatory Factor-1 (Deaf-1) Gene Knock-out Mice

2012 
Altered regulation of the serotonin-1A (5-HT1A) receptor gene is implicated in major depression and mood disorders. The functional human 5-HT1A C(−1019)G promoter polymorphism (rs6295), which prevents the binding of Deaf-1/NUDR leading to dysregulation of the receptor, has been associated with major depression. In cell models Deaf-1 displays dual activity, repressing 5-HT1A autoreceptor expression in serotonergic raphe cells while enhancing postsynaptic 5-HT1A heteroreceptor expression in nonserotonergic neurons. A functional Deaf-1 binding site on the mouse 5-HT1A promoter was recognized by Deaf-1 in vitro and in vivo and mediated dual activity of Deaf-1 on 5-HT1A gene transcription. To address regulation by Deaf-1 in vivo, Deaf-1 knock-out mice bred to a C57BL/6 background were compared with wild-type siblings for changes in 5-HT1A RNA and protein by quantitative RT-PCR, in situ hybridization, and immunofluorescence. In the dorsal raphe, Deaf-1 knock-out mice displayed increased 5-HT1A mRNA, protein, and 5-HT1A-positive cell counts but reduced 5-HT levels, whereas other serotonergic markers, such as tryptophan hydroxylase (TPH)- or 5-HT-positive cells and TPH2 RNA levels, were unchanged. By contrast, 5-HT1A mRNA and 5-HT1A-positive cells were reduced in the frontal cortex of Deaf-1-null mice, with no significant change in hippocampal 5-HT1A RNA, protein, or cell counts. The region-specific alterations of brain 5-HT1A gene expression and reduced raphe 5-HT content in Deaf-1−/− mice indicate the importance of Deaf-1 in regulation of 5-HT1A gene expression and provide insight into the role of the 5-HT1A G(−1019) allele in reducing serotonergic neurotransmission by derepression of 5-HT1A autoreceptors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    60
    Citations
    NaN
    KQI
    []