Structural Insights into the Catalytic Mechanism of Phosphate Ester Hydrolysis by dUTPase

2004 
Abstract dUTPase is essential to keep uracil out of DNA. Crystal structures of substrate (dUTP and α,β-imino-dUTP) and product complexes of wild type and mutant dUTPases were determined to reveal how an enzyme responsible for DNA integrity functions. A kinetic analysis of wild type and mutant dUTPases was performed to obtain relevant mechanistic information in solution. Substrate hydrolysis is shown to be initiated via in-line nucleophile attack of a water molecule oriented by an activating conserved aspartate residue. Substrate binding in a catalytically competent conformation is achieved by (i) multiple interactions of the triphosphate moiety with catalysis-assisting Mg2+, (ii) a concerted motion of residues from three conserved enzyme motifs as compared with the apoenzyme, and (iii) an intricate hydrogen-bonding network that includes several water molecules in the active site. Results provide an understanding for the catalytic role of conserved residues in dUTPases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    77
    Citations
    NaN
    KQI
    []