Detection of trace concentrations of amino acid in aqueous solutions by Ion-pairing reversed-phase UPLC-ESI-QToF-MS: application to hydrothermal fluids

2009 
Natural gas, primarily methane (CH4), is produced in substantial amounts in ultramafic-hosted hydrothermal systems. These systems could also generate oil (heavier hydrocarbons) and the first building blocks of life (prebiotic molecules). In the presence of iron bearing minerals, serpentinisation reactions generate H2. Subsequently, CH4 could be synthesised by Fischer-Tropsch Type (FTT) reaction (4H2 + CO2 → CH4 + 2H2O) which is an abiotic process. This has lead to the idea of abiotic formation of larger organic molecules. Both thermodynamics and laboratory work support this idea, yet field data have been lacking. This study focuses on determining the organic content of fluids from ultramafic-hosted hydrothermal systems from the Mid-Atlantic Ridge (MAR) and the origin of the compounds. Fluids were collected from the Lost City, Rainbow, Ashadze and Logatchev vent fields during the EXOMAR (2005), SERPENTINE (2007), MoMARDREAMnaut (2007) and MOMAR08-Leg2 (2008) cruises conducted by IFREMER, France. A SBSE-TD-GC-MS technique was developed and used to extract, concentrate, separate and identify compounds in the fluids. Hydrothermally derived compounds appeared to consist mainly of hydrocarbons and O-bearing molecules. In addition, some amino acids were detected in the fluids by ULPC-ESI-QToF-MS but their origin will need to be determined. The organic content of the Rainbow fluids did not show intra field variability unlike differences could be noted over the years. In order to address the question of the source of the molecules, compound specific carbon isotopic analyses were carried out and completed with a bacterial (Pyrococcus abyssi) hydrothermal degradation experiment. The δ13C data fall in the range of -40 to -30‰ (vs. V-PDB), but individual δ13C values preclude the identification of a biogenic or abiogenic origin of the compounds. The degradation experiment, however, suggests an abiogenic origin of a portion of saturated hydrocarbons whereas carboxylic acids would be biogenic, and aromatic compounds would be thermogenic.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []