Fabrication and characterization of biaxially electrospun collagen/alginate nanofibers, improved with Rhodotorula mucilaginosa sp. GUMS16 produced exopolysaccharides for wound healing applications.

2021 
Abstract Fabrication of scaffolds with enhanced mechanical properties and desirable cellular compatibility is critical for numerous tissue engineering applications. This study was aimed at fabrication and characterization of a nanofiber skin substitute composed of collagen (Col)/sodium alginate (SA)/ polyethylene oxide (PEO)/Rhodotorula mucilaginosa sp. GUMS16 produced exopolysaccharides (EPS) were prepared using the biaxial electrospinning technique. This study used collagen extracted from the bovine tendon as a natural scaffold, sodium alginate as an absorber of excess wound fluids, and GUMS16 produced exopolysaccharides as an antioxidant. Collagen was characterized using FTIR and EDS analyses. The cross-linked nanofibers were characterized by SEM, FTIR, tensile, contact-angle, swelling test, MTT, and cell attachment techniques. The average diameter of Col nanofiber was 910 ± 89 nm. The Col and Col-SA/PEO non-woven mats' water contact angle measurement was 41.6o and 56.4o, Col/EPS1%, Col/EPS2%, Col-SA/PEO + EPS1%, and Col-SA/PEO + EPS2% were 61.4o, 58.3o, 38.5o, and 50.6o, respectively. Cell viability of more than 100% was shown in Col-SA/PEO + EPS nanofibers. Also, SEM images of cells on nanofiber scaffolds demonstrated that all nanofibers incorporated with GUMS16-produced EPS have good cell growth and proliferation. The acquired results expressed that the GUMS16-produced EPS can be considered a novel biomacromolecule in electrospun fibers that increase cell viability and proliferation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    0
    Citations
    NaN
    KQI
    []