Entangled Fourier Transformation and its Application in Weyl-Wigner Operator Ordering and Fractional Squeezing

2019 
In order to entangle the functions to be transformed, we proposed the entangled. Fourier integration transformation (EFIT) which has the property of keeping modulus-invariant for its inverse transformation. Then we then studied Wigner operator’s EFIT and found that a function’s EFIT is just related to its Weyl-corresponding operator’s matrix element, in so doing we also derived new operator re-ordering formulas \( \delta \left(x-P\right)\left(y-Q\right)=\frac{1}{\pi }{\displaystyle \begin{array}{c}:\\ {}:\end{array}}{e}^{-2i\left(P-x\right)\left(Q-y\right)}\ {\displaystyle \begin{array}{c}:\\ {}:\end{array}} \);\( \delta \left(y-Q\right)\left(x-P\right)=\frac{1}{\pi }{\displaystyle \begin{array}{c}:\\ {}:\end{array}}{e}^{2i\left(P-x\right)\left(Q-y\right)}\ {\displaystyle \begin{array}{c}:\\ {}:\end{array}} \), where P, Q are momentum and coordinate operator respectively, the symbol \( {\displaystyle \begin{array}{c}:\\ {}:\end{array}}\ {\displaystyle \begin{array}{c}:\\ {}:\end{array}} \) denotes Weyl ordering. By virtue of EFIT we also found the operator which can generate fractional squeezing transformation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    1
    Citations
    NaN
    KQI
    []