Virulence Patterns in a Murine Sepsis Model of ST131 Escherichia coli Clinical Isolates Belonging to Serotypes O25b:H4 and O16:H5 Are Associated to Specific Virotypes

2014 
Escherichia coli sequence type (ST)131 is an emerging disseminated public health threat implicated in multidrug-resistant extraintestinal infections worldwide. Although the majority of ST131 isolates belong to O25b:H4 serotype, new variants with different serotypes, STs using the discriminative multilocus sequence typing scheme of Pasteur Institute, and virulence-gene profiles (virotypes) have been reported with unknown implications on the pattern of spread, persistence and virulence. The aim of the present study was to compare virulence in a mouse subcutaneous sepsis model of representative ST131 clinical isolates belonging to 2 serotypes (O25b:H4, O16:H5) and nine virotypes and subtypes (A, B, C, D1, D2, D3, D4, D5 and E). Fourteen out of the 23 ST131 isolates tested (61%) killed 90 to 100% of mice challenged, and 18 of 23 (78%) at least 50%. Interestingly, different virulence patterns in association with virotypes were observed, from highly rapid lethality (death in less than 24 h) to low final lethality (death at 7 days) but with presence of an acute inflammation. This is the first study to assess virulence of ST131 isolates belonging to serotype O16:H5, which exhibited virotype C. In spite of their low virulence-gene score, O16:H5 isolates did not show significant differences in final lethality compared with highly virulent O25b:H4 isolates of virotypes A, B and C, but killed mice less rapidly. Significant differences were found, however, between virotypes A, B, C (final lethality ≥80% of mice challenged) and virotypes D, E. Particularly unexpected was the low lethality of the newly assigned virotype E taking into account that it exhibited high virulence-gene score, and the same clonotype H30 as highly virulent O25b:H4 isolates of virotypes A, B and C. In vivo virulence diversity reported in this study would reflect the genetic variability within ST131 clonal group evidenced by molecular typing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    36
    Citations
    NaN
    KQI
    []