Semicrystalline Dihydroxyacetone Copolymers Derived from Glycerol

2012 
The ring-opening polymerization of glycerol-derived six-membered cyclic dimethylacetal dihydroxyacetone carbonate (MeO2DHAC) have been studied both in solution and bulk conditions with organic catalysts. The guanidine 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) was the most active catalyst in solution, whereas the thiourea/sparteine catalytic system displayed the most predictable kinetics. Ring-opening polymerization of MeO2DHAC or copolymerization with e-caprolactone (CL) in the melt occurred readily with TBD as catalyst to afford random copolymers. Acetal deprotection afforded the polycarbonate poly(dihydroxyactone carbonate) (p(DHAC)) or poly(carbonate ester) copolymers p(DHAC-r-CL). The polycarbonate p(DHAC) is a high-melting thermoplastic with a melting point of 246 °C. The p(DHAC-r-CL) copolymers all displayed semicrystalline behavior as evidenced by DSC and WAXS analysis with Tg and Tm changing as a function of comonomer composition. These new materials could have potential use in biomedical applicat...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    23
    Citations
    NaN
    KQI
    []