Efficient Electrocatalytic CO2 Reduction to C2+ Alcohols at Defect-Site-Rich Cu Surface

2021 
Summary Electrochemical CO2 reduction is a promising approach for upgrading excessive CO2 into value-added chemicals, while the exquisite control of the catalyst atomic structures to obtain high C2+ alcohol selectivity has remained challenging due to the intrinsically favored ethylene pathways at Cu surface. Herein, we demonstrate a rational strategy to achieve ∼70% faradaic efficiency toward C2+ alcohols. We utilized a CO-rich environment to construct Cu catalysts with stepped sites that enabled high surface coverages of ∗CO intermediates and the bridge-bound ∗CO adsorption, which allowed to trigger CO2 reduction pathways toward the formation alcohols. Using this defect-site-rich Cu catalyst, we achieved C2+ alcohols with partial current densities of > 100 mA·cm−2 in both a flow-cell electrolyzer and a membrane electrode assembly (MEA) electrolyzer. A stable alcohol faradaic efficiency of ∼60% was also obtained, with ∼500 mg C2+ alcohol production per cm2 catalyst during a continuous 30-h operation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    14
    Citations
    NaN
    KQI
    []