Integrated tool for IGCC power plants design.
2009
Expanding economies and global warming are increasingly important and interrelated challenging issues which require cleaner and more efficient power plants designs to comply with sustainable energy demand are required. Integrated Gasification Combined Cycle (IGCC) power plants have an important role, because of their more efficient way of producing energy from fossil fuels. Actions are focused on clean power and H2 from coal, and bioproducts. So, one of the future of coal-based power generation strategies should be CO2 transport and storage in order to obtain a purer hydrogen stream. This paper proposes a methodology and supporting tool for estimating plant performance in terms of power effiency and environmental compliance and making an economic assessment for different scenarios. The technical performance has been modeled in Aspen Hysys and Aspen Plus, and models have been validated with real power plant data from ELCOGAS. Comparisons, in terms of power, emissions, efficiencies and costs between a wide variety of plant designs are presented: they enhance differences in raw material, purification units layout, and hydrogen obtention. Results obtained are examined and discussed towards future work.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
1
References
0
Citations
NaN
KQI