Facilitating Minima Search for Large Water Clusters at the MP2 Level via Molecular Tailoring

2012 
Water clusters (H2O)20 and (H2O)25 are explored at the Moller–Plesset second-order perturbation (MP2) level of theory. Geometry optimization is carried out on favorable structures, initially generated by the temperature basin paving (TBP) method, utilizing the fragment-based molecular tailoring approach (MTA). MTA-based stabilization energies at the complete basis set limit are accurately estimated by grafting the energy correction using a smaller basis set. For prototypical cases, the minima are established via MTA-based vibrational frequency calculations at the MP2/aug-cc-pVDZ level. The potential of MTA in tackling large clusters is further demonstrated by performing geometry optimization at MP2/aug-cc-pVDZ starting with the global minimum of (H2O)30 reported by Monte Carlo (MC) and molecular dynamics (MD) investigations. The present study brings out the efficacy of MTA in performing computationally expensive ab initio calculations with minimal off-the-shelf hardware without significant loss of accuracy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    65
    Citations
    NaN
    KQI
    []