Super-resolution of clinical CT volumes with modified CycleGAN using micro CT volumes.
2020
This paper presents a super-resolution (SR) method with unpaired training dataset of clinical CT and micro CT volumes. For obtaining very detailed information such as cancer invasion from pre-operative clinical CT volumes of lung cancer patients, SR of clinical CT volumes to $\m$}CT level is desired. While most SR methods require paired low- and high- resolution images for training, it is infeasible to obtain paired clinical CT and {\mu}CT volumes. We propose a SR approach based on CycleGAN, which could perform SR on clinical CT into $\mu$CT level. We proposed new loss functions to keep cycle consistency, while training without paired volumes. Experimental results demonstrated that our proposed method successfully performed SR of clinical CT volume of lung cancer patients into $\mu$CT level.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
2
References
0
Citations
NaN
KQI