Cancer-associated fibroblasts in pancreatic ductal adenocarcinoma determine response to SLC7A11 inhibition

2020 
Cancer-Associated Fibroblasts (CAFs) are major contributors to pancreatic ductal adenocarcinoma (PDAC) progression, through pro-tumour cross-talk and the generation of fibrosis (physical barrier to drugs). CAF inhibition is thus an ideal component of any therapeutic approach for PDAC. SLC7A11 is a cystine transporter that has been identified as a potential therapeutic target in PDAC cells. However, no prior study has evaluated the role of SLC7A11 in PDAC tumour stroma and its prognostic significance. Herein we show that high expression of SLC7A11 in PDAC tumour stroma (but not tumour cells) is independently prognostic of poorer overall survival. We demonstrate using orthogonal approaches that PDAC-derived CAFs are highly dependent on SLC7A11 for cystine uptake and glutathione synthesis, and that SLC7A11 inhibition significantly decreases their proliferation, reduces their resistance to oxidative stress and inhibits their ability to remodel collagen and support PDAC cell growth. Importantly, our paradigm-shifting work demonstrates the need to inhibit SLC7A11 in the PDAC stroma, as genetic ablation of SLC7A11 in PDAC cells alone is not enough to reduce tumour growth. Finally, our work validates that a nano-based gene-silencing drug against SLC7A11, developed by our group, reduces PDAC tumour growth, CAF activation and fibrosis in a mouse model of PDAC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    0
    Citations
    NaN
    KQI
    []