Effect of water deficit on gas exchange, osmotic solutes, leaf abscission, and growth of four birch genotypes (Betula L.) under a controlled environment

2007 
Water was withheld from 2-year-old seedlings or rooted cuttings of four birch genotypes (Betula alleghaniensis Britton, B. davurica Pall., B. nigra L. 'Cully', and B. papyrifera Marsh.) until the combined weight of the container and plant decreased below 40% of its original value to induce plant predawn water potential between -1.5 MPa and -2.1 MPa, after which plants were supplied with a requisite amount of water to reach 40% of its original value for 5 weeks under controlled conditions to investigate changes in gas exchange, osmotic solutes, leaf abscission, and growth compared with well-watered (WW) plants. Observations indicated that three of the four genotypes (except B. papyrifera) expressed three stages of photosynthetic response during water deficit: 1) a stress stage, 2) an acclimation stage, and 3) an adapted (or tolerance) stage. The stages were characterized by decreasing, increasing, and stabilized Pn ws/ww (net photosynthesis presented as a ratio of water-deficit stressed (WS) plants to WW plants), respectively. A strong relationship between Pn and gs observed in the WS plants of the four genotypes, suggested inhibition of Pn by stomatal closure. After exposure to water deficit for 5 weeks, Pn ws/ww recovered to 70% of the initial value for B. alleghaniensis and B. nigra 'Cully' and 98% for B. davurica and B. papyrifera. WS plants had higher foliar concentrations of chlorophyll a and b (nmol/g) and potassium (%) than the WW plants. Increased levels of polyols (mg/g) were detected only in the WS plants of B. allegahaniensis. Increased levels of carbohydrates or organic acid under water deficit were not detected. A significant increase in leaf abscission in the WS plants of B. papyrifera compared with the other genotypes could be a morphological adaptation to water deficit conditions and facilitate recovery of Pn ws/ww during the acclimation stage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    14
    Citations
    NaN
    KQI
    []